Antibiotics Are Man's Greatest Invention

Bengamides display potent activity against drug-resistant Mycobacterium tuberculosis

  • 1.

    Jackett, P. S., Aber, V. R. & Lowrie, D. B. Virulence and resistance to superoxide, low pH and hydrogen peroxide among strains of Mycobacterium tuberculosis. J Gen Microbiol 104, 37–45 (1978).

  • 2.

    Vandal, O. H., Nathan, C. F. & Ehrt, S. Acid resistance in Mycobacterium tuberculosis. J Bacteriol 191, 4714–4721 (2009).

  • 3.

    Gerston, K. F., Blumberg, L., Tshabalala, V. A. & Murray, J. Viability of mycobacteria in formalin-fixed lungs. Hum Pathol 35, 571–575 (2004).

  • 4.

    Brennan, P. J. & Nikaido, H. The envelope of mycobacteria. Annu Rev Biochem 64, 29–63 (1995).

  • 5.

    Trias, J., Jarlier, V. & Benz, R. Porins in the cell wall of mycobacteria. Science 258, 1479–1481 (1992).

  • 6.

    Schaberg, T. Treatment of tuberculosis. Current standards. Internist (Berl) 56, 1379–1388 (2015).

  • 7.

    Mahmoudi, A. & Iseman, M. D. Pitfalls in the care of patients with tuberculosis. Common errors and their association with the acquisition of drug resistance. JAMA 270, 65–68 (1993).

  • 8.

    Ventola, C. L. The antibiotic resistance crisis: part 1: causes and threats. P T 40, 277–283 (2015).

  • 9.

    Brotz-Oesterhelt, H. & Sass, P. Postgenomic strategies in antibacterial drug discovery. Future Microbiol 5, 1553–1579 (2010).

  • 10.

    DiMasi, J. A., Hansen, R. W. & Grabowski, H. G. The price of innovation: new estimates of drug development costs. J Health Econ 22, 151–185, https://doi.org/10.1016/S0167-6296(02)00126-1 (2003).

  • 11.

    WHO. Global Tuberculosis Report 2017 (2017).

  • 12.

    Emmerich, R. & Low, O. Bakteriolytische Enzyme als Ursache der erworbenen Immunität und die Heilung von Infectionskrankheiten durch dieselben. Z Hyg Infektionskr 31, 1–65 (1899).

  • 13.

    Sukuru, S. C. et al. Plate-based diversity selection based on empirical HTS data to enhance the number of hits and their chemical diversity. J Biomol Screen 14, 690–699 (2009).

  • 14.

    Rutledge, P. J. & Challis, G. L. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat Rev Microbiol 13, 509–523 (2015).

  • 15.

    Mehbub, M. F., Perkins, M. V., Zhang, W. & Franco, C. M. M. New marine natural products from sponges (Porifera) of the order Dictyoceratida (2001 to 2012); a promising source for drug discovery, exploration and future prospects. Biotechnol Adv 34, 473–491 (2016).

  • 16.

    Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. & Worm, B. How Many Species Are There on Earth and in the Ocean? PLOS Biology 9, e1001127 (2011).

  • 17.

    Kennedy, J. et al. Marine metagenomics: new tools for the study and exploitation of marine microbial metabolism. Mar Drugs 8, 608–628 (2010).

  • 18.

    Subramani, R. & Aalbersberg, W. Marine actinomycetes: an ongoing source of novel bioactive metabolites. Microbiol Res 167, 571–580 (2012).

  • 19.

    Le Cesne, A. & Reichardt, P. Optimizing the use of trabectedin for advanced soft tissue sarcoma in daily clinical practice. Future Oncol 11, 3–14 (2015).

  • 20.

    Chhikara, B. S. & Parang, K. Development of cytarabine prodrugs and delivery systems for leukemia treatment. Expert Opin Drug Deliv 7, 1399–1414 (2010).

  • 21.

    Garrone, O. et al. Eribulin in advanced breast cancer: safety, efficacy and new perspectives. Future Oncol 13, 2759–2769 (2017).

  • 22.

    Whitley, R. et al. A controlled trial comparing vidarabine with acyclovir in neonatal herpes simplex virus infection. Infectious Diseases Collaborative Antiviral Study Group. N Engl J Med 324, 444–449 (1991).

  • 23.

    Evans-Illidge, E. A. et al. Phylogeny drives large scale patterns in Australian marine bioactivity and provides a new chemical ecology rationale for future biodiscovery. PLoS One 8, e73800 (2013).

  • 24.

    Capon, R. J. et al. Extraordinary Levels of Cadmium and Zinc in a Marine Sponge, Tedania-Charcoti Topsent – Inorganic Chemical Defense Agents. Experientia 49, 263–264 (1993).

  • 25.

    Quinoa, E., Adamczeski, M., Crews, P. & Bakus, G. J. Bengamides, Heterocyclic Anthelmintics from a Jaspidae Marine Sponge. Journal of Organic Chemistry 51, 4494–4497 (1986).

  • 26.

    Hu, X. et al. Regulation of c-Src nonreceptor tyrosine kinase activity by bengamide A through inhibition of methionine aminopeptidases. Chem Biol 14, 764–774 (2007).

  • 27.

    Lu, J. P. et al. Inhibition of Mycobacterium tuberculosis methionine aminopeptidases by bengamide derivatives. ChemMedChem 6, 1041–1048 (2011).

  • 28.

    Towbin, H. et al. Proteomics-based target identification: bengamides as a new class of methionine aminopeptidase inhibitors. J Biol Chem 278, 52964–52971 (2003).

  • 29.

    Chou, T. C. & Talalay, P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22, 27–55 (1984).

  • 30.

    Diacon, A. H. et al. The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N Engl J Med 360, 2397–2405 (2009).

  • 31.

    Conradie, F. et al. Clinical access to Bedaquiline Programme for the treatment of drug-resistant tuberculosis. S Afr Med J 104, 164–166 (2014).

  • 32.

    Ryan, N. J. & Lo, J. H. Delamanid: first global approval. Drugs 74, 1041–1045 (2014).

  • 33.

    Palomino, J. C. & Martin, A. Tuberculosis clinical trial update and the current anti-tuberculosis drug portfolio. Curr Med Chem 20, 3785–3796 (2013).

  • 34.

    Thakur, A. N. et al. Antiangiogenic, antimicrobial, and cytotoxic potential of sponge-associated bacteria. Mar Biotechnol (NY) 7, 245–252 (2005).

  • 35.

    Wilson, D. M., Puyana, M., Fenical, W. & Pawlik, J. R. Chemical defense of the Caribbean reef sponge Axinella corrugata against predatory fishes. J Chem Ecol 25, 2811–2823 (1999).

  • 36.

    Wu, Z. Y., Li, Y. T. & Xu, D. J. Diaqua(2,2′-diamino-4,4′-bi-1,3-thiazole)oxosulfatovanadium(IV) tetrahydrate. Acta Crystallogr C 61, m463–465 (2005).

  • 37.

    Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3, 711–715 (2004).

  • 38.

    Isbister, G. K. & Hooper, J. N. Clinical effects of stings by sponges of the genus Tedania and a review of sponge stings worldwide. Toxicon 46, 782–785 (2005).

  • 39.

    Dillman, R. L. & Cardellina, J. H. Aromatic Secondary Metabolites from the Sponge Tedania-Ignis. Journal of Natural Products 54, 1056–1061 (1991).

  • 40.

    Schmitz, F. J. et al. Metabolites from the Marine Sponge Tedania-Ignis – a New Atisanediol and Several Known Diketopiperazines. Journal of Organic Chemistry 48, 3941–3945 (1983).

  • 41.

    Cronan, J. M. Jr. & Cardellina, J. H. II A Novel δ-Lactam from the Sponge Tedania ignis. Natural Product Letters 5, 85–88 (1994).

  • 42.

    Chevallier, C. et al. Tedanolide C: A potent new 18-membered-ring cytotoxic macrolide isolated from the Papua New Guinea marine sponge Ircinia sp. Journal of Organic Chemistry 71, 2510–2513 (2006).

  • 43.

    Costantino, V. et al. Tedanol: A potent anti-inflammatory ent-pimarane diterpene from the Caribbean Sponge Tedania ignis. Bioorgan Med Chem 17, 7542–7547 (2009).

  • 44.

    Parameswaran, P. S., Naik, C. G. & Hegde, V. R. Secondary metabolites from the sponge Tedania anhelans: Isolation and characterization of two novel pyrazole acids and other metabolites. Journal of Natural Products 60, 802–803 (1997).

  • 45.

    Tanaka, Y. & Katayama, T. Biochemical Studies on the Carotenoids in Porifera: The Structure of Tedaniaxanthin. Nippon Suisan Gakkaishi 45, 633–634 (1979).

  • 46.

    Visamsetti, A., Ramachandran, S. S. & Kandasamy, D. Penicillium chrysogenum DSOA associated with marine sponge (Tedania anhelans) exhibit antimycobacterial activity. Microbiol Res 185, 55–60 (2016).

  • 47.

    Kinder, F. R. Jr. et al. Total syntheses of bengamides B and E. J Org Chem 66, 2118–2122 (2001).

  • 48.

    Phillips, P. E. et al. Bengamide E arrests cells at the G1/S restriction point and within the G2/M phase of the cell cycle. Proc Annu Meet Am Assoc Cancer Res 41, 59 (2000).

  • 49.

    Johnson, T. A. et al. Myxobacteria versus sponge-derived alkaloids: the bengamide family identified as potent immune modulating agents by scrutiny of LC-MS/ELSD libraries. Bioorg Med Chem 20, 4348–4355 (2012).

  • 50.

    Dumez, H. et al. A phase I and pharmacokinetic study of LAF389 administered to patients with advanced cancer. Anticancer Drugs 18, 219–225 (2007).

  • 51.

    Swinney, D. C. & Anthony, J. How were new medicines discovered? Nat Rev Drug Discov 10, 507–519 (2011).

  • 52.

    Bradshaw, R. A., Brickey, W. W. & Walker, K. W. N-terminal processing: the methionine aminopeptidase and N alpha-acetyl transferase families. Trends Biochem Sci 23, 263–267 (1998).

  • 53.

    Vaughan, M. D., Sampson, P. B. & Honek, J. F. Methionine in and out of proteins: targets for drug design. Curr Med Chem 9, 385–409 (2002).

  • 54.

    Olaleye, O. et al. Methionine Aminopeptidases from Mycobacterium tuberculosis as Novel Antimycobacterial Targets. Chemistry & Biology 17, 86–97 (2010).

  • 55.

    Griffith, E. C. et al. Methionine aminopeptidase (type 2) is the common target for angiogenesis inhibitors AGM-1470 and ovalicin. Chemistry & Biology 4, 461–471 (1997).

  • 56.

    Sin, N. et al. The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase, MetAP-2. P Natl Acad Sci USA 94, 6099–6103 (1997).

  • 57.

    Polena, H. et al. Mycobacterium tuberculosis exploits the formation of new blood vessels for its dissemination. Sci Rep 6, 33162 (2016).

  • 58.

    Yu, M. et al. Nontoxic Metal-Cyclam Complexes, a New Class of Compounds with Potency against Drug-Resistant Mycobacterium tuberculosis. J Med Chem 59, 5917–5921 (2016).

  • 59.

    Zhang, J. H., Chung, T. D. Y. & Oldenburg, K. R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. Journal of Biomolecular Screening 4, 67–73 (1999).

  • 60.

    Hu, X. Y., Addlagatta, A., Matthews, B. W. & Liu, J. O. Identification of pyridinylpyrimidines as inhibitors of human methionine aminopeptidases. Angew Chem Int Edit 45, 3772–3775 (2006).

  • 61.

    Kishor, C., Gumpena, R., Reddi, R. & Addlagatta, A. Structural studies of Enterococcus faecalis methionine aminopeptidase and design of microbe specific2,2′-bipyridine based inhibitors. Medchemcomm 3, 1406–1412, https://doi.org/10.1039/c2md20096a (2012).

  • 62.

    Reddi, R. et al. Selective targeting of the conserved active site cysteine of Mycobacterium tuberculosis methionine aminopeptidase with electrophilic reagents. Febs J 281, 4240–4248 (2014).

  • Source