Antibiotics Are Man's Greatest Invention

Chimeric peptidomimetic antibiotics against Gram-negative bacteria

  • 1.

    WHO. Global Priority List of Antibiotic-resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics (World Health Organization, Geneva, 2017).

  • 2.

    Boucher, H. W. et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 48, 1–12 (2009).

  • 3.

    O’Neill, J. Project Syndicate – A Call to Antimicrobial Arms https://www.project-syndicate.org/commentary/antibiotics-resistance-economic-costs-by-jim-o-neill-2015-02 (2015).

  • 4.

    Paterson, D. L. & Harris, P. N. A. Colistin resistance: a major breach in our last line of defence. Lancet Infect. Dis. 16, 132–133 (2016).

  • 5.

    Henderson, J. C. et al. The power of asymmetry: architecture and assembly of the Gram-negative outer membrane bilayer. Annu. Rev. Microbiol. 70, 255–278 (2016).

  • 6.

    Konovalova, A., Kahne, D. E. & Silhavy, T. J. Outer membrane biogenesis. Annu. Rev. Microbiol. 71, 539–556 (2017).

  • 7.

    Srinivas, N. et al. Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa. Science 327, 1010–1013 (2010).

  • 8.

    Werneburg, M. et al. Inhibition of lipopolysaccharide transport to the outer membrane in Pseudomonas aeruginosa by peptidomimetic antibiotics. ChemBioChem 13, 1767–1775 (2012).

  • 9.

    Noinaj, N., Rollauer, S. E. & Buchanan, S. K. The β-barrel membrane protein insertase machinery from Gram-negative bacteria. Curr. Opin. Struct. Biol. 31, 35–42 (2015).

  • 10.

    Storm, D. R., Rosenthal, K. S. & Swanson, P. E. Polymyxin and related peptide antibiotics. Annu. Rev. Biochem. 46, 723–763 (1977).

  • 11.

    Mares, J., Kumaran, S., Gobbo, M. & Zerbe, O. Interactions of lipopolysaccharide and polymyxin studied by NMR spectroscopy. J. Biol. Chem. 284, 11498–11506 (2009).

  • 12.

    Roberts, K. D. et al. Antimicrobial activity and toxicity of the major lipopeptide components of polymyxin B and colistin: last-line antibiotics against multidrug-resistant Gram-negative bacteria. ACS Infect. Dis. 1, 568–575 (2015).

  • 13.

    Baron, S., Hadjadj, L., Rolain, J.-M. & Olaitan, A. O. Molecular mechanisms of polymyxin resistance: knowns and unknowns. Int. J. Antimicrob. Agents 48, 583–591 (2016).

  • 14.

    Olaitan, A. O., Morand, S. & Rolain, J.-M. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front. Microbiol. 5, 643 (2014).

  • 15.

    Raetz, C. R., Reynolds, C. M., Trent, M. S. & Bishop, R. E. Lipid A modification systems in Gram-negative bacteria. Annu. Rev. Biochem. 76, 295–329 (2007).

  • 16.

    Groisman, E. A. The pleiotropic two-component regulatory system PhoP–PhoQ. J. Bacteriol. 183, 1835–1842 (2001).

  • 17.

    McPhee, J. B., Lewenza, S. & Hancock, R. E. Cationic antimicrobial peptides activate a two-component regulatory system, PmrA–PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol. Microbiol. 50, 205–217 (2003).

  • 18.

    Okuda, S., Sherman, D. J., Silhavy, T. J., Ruiz, N. & Kahne, D. Lipopolysaccharide transport and assembly at the outer membrane: the PEZ model. Nat. Rev. Microbiol. 14, 337–345 (2016).

  • 19.

    Hartmann, J.-B., Zahn, M., Burmann, I. M., Bibow, S. & Hiller, S. Sequence-specific solution NMR assignments of the β-barrel insertase BamA to monitor its conformational ensemble at the atomic level. J. Am. Chem. Soc. 140, 11252–11260 (2018).

  • 20.

    Mahoney, T. F., Ricci, D. P. & Silhavy, T. J. Classifying β-barrel assembly substrates by manipulating essential Bam complex members. J. Bacteriol. 198, 1984–1992 (2016).

  • 21.

    Lee, J. et al. Characterization of a stalled complex on the β-barrel assembly machine. Proc. Natl Acad. Sci. USA 113, 8717–8722 (2016).

  • 22.

    Gunasinghe, S. D. et al. The WD40 protein BamB mediates coupling of BAM complexes into assembly precincts in the bacterial outer membrane. Cell Rep. 23, 2782–2794 (2018).

  • 23.

    Mitchell, A. M. & Silhavy, T. J. Envelope stress responses: balancing damage repair and toxicity. Nat. Rev. Microbiol. 17, 417–428 (2019).

  • 24.

    Storek, K. M. et al. Monoclonal antibody targeting the β-barrel assembly machine of Escherichia coli is bactericidal. Proc. Natl Acad. Sci. USA 115, 3692–3697 (2018).

  • 25.

    Browning, D. F. et al. Mutational and topological analysis of the Escherichia coli BamA protein. PLoS ONE 8, e84512 (2013).

  • 26.

    Lee, J. et al. Substrate binding to BamD triggers a conformational change in BamA to control membrane insertion. Proc. Natl Acad. Sci. USA 115, 2359–2364 (2018).

  • 27.

    Rigel, N. W., Ricci, D. P. & Silhavy, T. J. Conformation-specific labeling of BamA and suppressor analysis suggest a cyclic mechanism for β-barrel assembly in Escherichia coli. Proc. Natl Acad. Sci. USA 110, 5151–5156 (2013).

  • 28.

    Dixon, R. A. & Chopra, I. Polymyxin B and polymyxin B nonapeptide alter cytoplasmic membrane permeability in Escherichia coli. J. Antimicrob. Chemother. 18, 557–563 (1986).

  • 29.

    Moffatt, J. H. et al. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob. Agents Chemother. 54, 4971–4977 (2010).

  • 30.

    Choi, M. et al. MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Bioinformatics 30, 2524–2526 (2014).

  • 31.

    Carlson, M. UniProt.ws: R interface to UniProt web services. R package version 2.14.0. https://bioconductor.org/packages/release/bioc/html/UniProt.ws.html (2018)

  • Source