Antibiotics Are Man's Greatest Invention

Engineering nucleoside antibiotics toward the development of novel antimicrobial agents

  • 1.

    Tacconelli E, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18:318–27.

  • 2.

    Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis. 2008;197:1079–81.

  • 3.

    Niu G, Tan H. Nucleoside antibiotics: biosynthesis, regulation, and biotechnology. Trends Microbiol. 2015;23:110–9.

  • 4.

    Niu G, Zheng J, Tan H. Biosynthesis and combinatorial biosynthesis of antifungal nucleoside antibiotics. Sci China Life Sci. 2017;60:939–47.

  • 5.

    Isono K. Current progress on nucleoside antibiotics. Pharmacol Ther. 1991;52:269–86.

  • 6.

    Isono K. Nucleoside antibiotics: structure, biological activity, and biosynthesis. J Antibiot. 1988;41:1711–39.

  • 7.

    Chen W, et al. Natural and engineered biosynthesis of nucleoside antibiotics in actinomycetes. J Ind Microbiol Biotechnol. 2016;43:401–17.

  • 8.

    Chen S, Kinney WA, Van Lanen S. Nature’s combinatorial biosynthesis and recently engineered production of nucleoside antibiotics in Streptomyces. World J Microbiol Biotechnol. 2017;33:66.

  • 9.

    Typas A, Banzhaf M, Gross CA, Vollmer W. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol. 2011;10:123–36.

  • 10.

    Walsh CT, Zhang W. Chemical logic and enzymatic machinery for biological assembly of peptidyl nucleoside antibiotics. ACS Chem Biol. 2011;6:1000–7.

  • 11.

    Liu X, et al. The role of a nonribosomal peptide synthetase in L-lysine lactamization during capuramycin biosynthesis. Chembiochem. 2016;17:804–10.

  • 12.

    Shiraishi T, Nishiyama M, Kuzuyama T. Biosynthesis of the uridine-derived nucleoside antibiotic A-94964: identification and characterization of the biosynthetic gene cluster provide insight into the biosynthetic pathway. Org Biomol Chem. 2019;17:461–6.

  • 13.

    Chung BC, et al. Structural insights into inhibition of lipid I production in bacterial cell wall synthesis. Nature. 2016;533:557–60.

  • 14.

    Hakulinen JK, et al. MraY-antibiotic complex reveals details of tunicamycin mode of action. Nat Chem Biol. 2017;13:265–7.

  • 15.

    Lenardon MD, Munro CA, Gow NA. Chitin synthesis and fungal pathogenesis. Curr Opin Microbiol. 2010;13:416–23.

  • 16.

    Wise CE, Makris TM. Recruitment and regulation of the non-ribosomal peptide synthetase modifying cytochrome P450 involved in nikkomycin biosynthesis. ACS Chem Biol. 2017;12:1316–26.

  • 17.

    He N, et al. Construction of an octosyl acid backbone catalyzed by a radical S-adenosylmethionine enzyme and a phosphatase in the biosynthesis of high-carbon sugar nucleoside antibiotics. Chem Sci. 2017;8:444–51.

  • 18.

    Gong R, et al. An ATP-dependent ligase with substrate flexibility involved in assembly of the peptidyl nucleoside antibiotic polyoxin. Appl Environ Microbiol. 2018;84:e00501–18.

  • 19.

    Li J, Li L, Tian Y, Niu G, Tan H. Hybrid antibiotics with the nikkomycin nucleoside and polyoxin peptidyl moieties. Metab Eng. 2011;13:336–44.

  • 20.

    Stefanska AL, Fulston M, Houge-Frydrych CS, Jones JJ, Warr SR. A potent seryl tRNA synthetase inhibitor SB-217452 isolated from a Streptomyces species. J Antibiot. 2000;53:1346–53.

  • 21.

    Pramanik A, Braun V. Albomycin uptake via a ferric hydroxamate transport system of Streptococcus pneumoniae R6. J Bacteriol. 2006;188:3878–86.

  • 22.

    Lin Z, et al. Total synthesis and antimicrobial evaluation of natural albomycins against clinical pathogens. Nat Commun. 2018;9:3445.

  • 23.

    Zeng Y, et al. Biosynthesis of albomycin δ2 provides a template for assembling siderophore and aminoacyl-tRNA synthetase inhibitor conjugates. ACS Chem Biol. 2012;7:1565–75.

  • 24.

    Ushimaru R, Liu HW. Biosynthetic origin of the atypical stereochemistry in the thioheptose core of albomycin nucleoside antibiotics. J Am Chem Soc. 2019;141:2211–4.

  • 25.

    Novikova M, et al. The Escherichia coli Yej transporter is required for the uptake of translation inhibitor microcin C. J Bacteriol. 2007;189:8361–5.

  • 26.

    Kazakov T, et al. Escherichia coli peptidase A, B, or N can process translation inhibitor microcin C. J Bacteriol. 2008;190:2607–10.

  • 27.

    Metlitskaya A, et al. Aspartyl-tRNA synthetase is the target of peptide nucleotide antibiotic microcin C. J Biol Chem. 2006;281:18033–42.

  • 28.

    Severinov K, Nair SK. Microcin C: biosynthesis and mechanisms of bacterial resistance. Future Microbiol. 2012;7:281–9.

  • 29.

    Dong SH, et al. Biosynthesis of the RiPP trojan horse nucleotide antibiotic microcin C is directed by the N-formyl of the peptide precursor. Chem Sci. 2019;10:2391–5.

  • 30.

    Wang X, Du A, Yu G, Deng Z, He X. Guanidine N-methylation by BlsL is dependent on acylation of Beta-amine arginine in the biosynthesis of blasticidin S. Front Microbiol. 2017;8:1565.

  • 31.

    Liu L, et al. A mechanistic study of the non-oxidative decarboxylation catalyzed by the radical S-adenosyl-l-methionine enzyme BlsE involved in blasticidin S biosynthesis. Chem Commun. 2017;53:8952–5.

  • 32.

    Igarashi Y, Kyoso T, Kim Y, Oikawa T. Simamycin (5’-O-geranyluridine): a new prenylated nucleoside from Streptomyces sp. J Antibiot. 2017;70:607–10.

  • 33.

    Aksoy SÇ, Uzel A, Bedir E. Cytosine-type nucleosides from marine-derived Streptomyces rochei 06CM016. J Antibiot. 2016;69:51–6.

  • 34.

    Bu YY, Yamazaki H, Ukai K, Namikoshi M. Anti-mycobacterial nucleoside antibiotics from a marine-derived Streptomyces sp. TPU1236A. Mar Drugs. 2014;12:6102–12.

  • 35.

    Davison JR, et al. A new natural product analog of blasticidin S reveals cellular uptake facilitated by the NorA multidrug transporter. Antimicrob Agents Chemother. 2017;61:e02635–16.

  • 36.

    Maffioli SI, et al. Antibacterial nucleoside-analog inhibitor of bacterial RNA Polymerase. Cell. 2017;169:1240–8.

  • 37.

    Wu L, Chen G, Feng G. Complete genome sequence of Streptomyces griseochromogenes ATCC 14511T, a producer of nucleoside compounds and diverse secondary metabolites. J Biotechnol. 2017;249:16–19.

  • 38.

    Yu Y, et al. Identification of the streptothricin and tunicamycin biosynthetic gene clusters by genome mining in Streptomyces sp. strain fd1-xmd. Appl Microbiol Biotechnol. 2018;102:2621–33.

  • 39.

    Bantysh O, et al. Enzymatic synthesis of bioinformatically predicted microcin C-like compounds encoded by diverse bacteria. mBio. 2014;5:e01059–14.

  • 40.

    Serebryakova M, et al. A trojan-horse peptide-carboxymethyl-cytidine antibiotic from Bacillus amyloliquefaciens. J Am Chem Soc. 2016;138:15690–8.

  • 41.

    Jiang L, et al. Identification of novel mureidomycin analogues via rational activation of a cryptic gene cluster in Streptomyces roseosporus NRRL 15998. Sci Rep. 2015;5:14111.

  • 42.

    Yan X, et al. Puromycin A, B and C, cryptic nucleosides identified from Streptomyces alboniger NRRL B-1832 by PPtase-based activation. Synth Syst Biotechnol. 2018;3:76–80.

  • 43.

    Gruschow S, et al. New pacidamycin antibiotics through precursor-directed biosynthesis. Chembiochem. 2009;10:355–60.

  • 44.

    Xie Y, et al. NRPS substrate promiscuity leads to more potent antitubercular sansanmycin analogues. J Nat Prod. 2014;77:1744–8.

  • 45.

    Zhang N, et al. Precursor-directed biosynthesis of new sansanmycin analogs bearing para-substituted-phenylalanines with high yields. J Antibiot. 2016;69:765–8.

  • 46.

    Feng C, et al. Novel nikkomycin analogues generated by mutasynthesis in Streptomyces ansochromogenes. Micro Cell Fact. 2014;13:59.

  • 47.

    Shi Y, et al. Improving the N-terminal diversity of sansanmycin through mutasynthesis. Micro Cell Fact. 2016;15:77.

  • 48.

    Zhu Q, Song Y, Huang H, Li Q, Ju J. Characterization of MtdV as a chorismate lyase essential to A201A biosynthesis and precursor-directed biosynthesis of new analogs. Org Biomol Chem. 2019;17:3760–4.

  • 49.

    Li J, Li L, Feng C, Chen Y, Tan H. Novel polyoxins generated by heterologously expressing polyoxin biosynthetic gene cluster in the sanN inactivated mutant of Streptomyces ansochromogenes. Micro Cell Fact. 2012;11:135.

  • 50.

    Zhai L, et al. Engineering of an industrial polyoxin producer for the rational production of hybrid peptidyl nucleoside antibiotics. Metab Eng. 2012;14:388–93.

  • 51.

    Qi J, et al. Metabolic engineering of an industrial polyoxin producer for the targeted overproduction of designer nucleoside antibiotics. Biotechnol Bioeng. 2015;112:1865–71.

  • 52.

    Zhuo J, et al. Reconstruction of a hybrid nucleoside antibiotic gene cluster based on scarless modification of large DNA fragments. Sci China Life Sci. 2017;60:968–79.

  • 53.

    Kaysser L, et al. Identification and manipulation of the caprazamycin gene cluster lead to new simplified liponucleoside antibiotics and give insights into the biosynthetic pathway. J Biol Chem. 2009;284:14987–96.

  • 54.

    Li L, Wu J, Deng Z, Zabriskie TM, He X. Streptomyces lividans blasticidin S deaminase and its application in engineering a blasticidin S-producing strain for ease of genetic manipulation. Appl Environ Microbiol. 2013;79:2349–57.

  • 55.

    Zhao C, Huang T, Chen W, Deng Z. Enhancement of the diversity of polyoxins by a thymine-7-hydroxylase homolog outside the polyoxin biosynthesis gene cluster. Appl Environ Microbiol. 2010;76:7343–7.

  • 56.

    Chen W, et al. Characterization of the polyoxin biosynthetic gene cluster from Streptomyces cacaoi and engineered production of polyoxin H. J Biol Chem. 2009;284:10627–38.

  • 57.

    Mitachi K, Aleiwi BA, Schneider CM, Siricilla S, Kurosu M. Stereocontrolled total synthesis of muraymycin D1 having a dual mode of action against Mycobacterium tuberculosis. J Am Chem Soc. 2016;138:12975–80.

  • 58.

    Katsuyama A, Ichikawa S. Synthesis and medicinal chemistry of muraymycins, nucleoside antibiotics. Chem Pharm Bull. 2018;66:123–31.

  • 59.

    Fujino H, et al. Unified total synthesis of polyoxins J, L, and fluorinated analogues on the basis of decarbonylative radical coupling reactions. Angew Chem Int Ed Engl. 2017;56:11865–9.

  • 60.

    Fu J, Laval S, Yu B. Total synthesis of nucleoside antibiotics plicacetin and streptcytosine A. J Org Chem. 2018;83:7076–84.

  • 61.

    Nie S, Li W, Yu B. Total synthesis of nucleoside antibiotic A201A. J Am Chem Soc. 2014;136:4157–60.

  • 62.

    Tran AT, et al. Sansanmycin natural product analogues as potent and selective anti-mycobacterials that inhibit lipid I biosynthesis. Nat Commun. 2017;8:14414.

  • 63.

    Walvoort MT, Lukose V, Imperiali B. A modular approach to phosphoglycosyltransferase inhibitors inspired by nucleoside antibiotics. Chemistry. 2016;22:3856–64.

  • 64.

    Vickers A, Mushtaq S, Woodford N, Doumith M, Livermore DM. Activity of RX-04 pyrrolocytosine protein synthesis inhibitors against multidrug-resistant Gram-negative bacteria. Antimicrob Agents Chemother. 2018;62:e00689–18.

  • Source