Antibiotics Are Man's Greatest Invention

Mimicking the human environment in mice reveals that inhibiting biotin biosynthesis is effective against antibiotic-resistant pathogens

  • 1.

    Brown, E. D. & Wright, G. D. Antibacterial drug discovery in the resistance era. Nature 529, 336–343 (2016).

  • 2.

    Sassetti, C. M. & Rubin, E. J. Genetic requirements for mycobacterial survival during infection. Proc. Natl Acad. Sci. USA 100, 12989–12994 (2003).

  • 3.

    Weiss, D. S. et al. In vivo negative selection screen identifies genes required for Francisella virulence. Proc. Natl Acad. Sci. USA 104, 6037–6042 (2007).

  • 4.

    Napier, B. A. et al. Link between intraphagosomal biotin and rapid phagosomal escape in Francisella. Proc. Natl Acad. Sci. USA 109, 18084–18089 (2012).

  • 5.

    Park, S. W. et al. Evaluating the sensitivity of Mycobacterium tuberculosis to biotin deprivation using regulated gene expression. PLoS Pathog. 7, e1002264 (2011).

  • 6.

    Wang, N., Ozer, E. A., Mandel, M. J. & Hauser, A. R. Genome-wide identification of Acinetobacter baumannii genes necessary for persistence in the lung. mBio 5, e01163–14 (2014).

  • 7.

    Subashchandrabose, S. et al. Acinetobacter baumannii genes required for bacterial survival during bloodstream infection. mSphere 1, e00013–e00015 (2016).

  • 8.

    Bachman, M. A. et al. Genome-wide identification of Klebsiella pneumoniae fitness genes during lung infection. mBio 6, e00775–15 (2015).

  • 9.

    Skurnik, D. et al. A comprehensive analysis of in vitro and in vivo genetic fitness of Pseudomonas aeruginosa using high-throughput sequencing of transposon libraries. PLoS Pathog. 9, e1003582 (2013).

  • 10.

    Crofts, A. A. et al. Enterotoxigenic E. coli virulence gene regulation in human infections. Proc. Natl Acad. Sci. USA 115, 8968–8976 (2018).

  • 11.

    Sheikh, A. et al. In vivo expression of Salmonella enterica serotype Typhi genes in the blood of patients with typhoid fever in Bangladesh. PLoS Negl. Trop. Dis. 5, e1419 (2011).

  • 12.

    Subashchandrabose, S., Smith, S. N., Spurbeck, R. R., Kole, M. M. & Mobley, H. L. T. Genome-wide detection of fitness genes in uropathogenic Escherichia coli during systemic infection. PLoS Pathog. 9, e1003788 (2013).

  • 13.

    Silva-Valenzuela, C. A. et al. Analysis of two complementary single-gene deletion mutant libraries of Salmonella Typhimurium in intraperitoneal infection of BALB/c mice. Front. Microbiol. 6, 1–9 (2016).

  • 14.

    Valentino, M. D. et al. Genes contributing to Staphylococcus aureus fitness in abscess- and infection-related ecologies. mBio 5, e01729–14 (2014).

  • 15.

    Streit, W. R. & Entcheva, P. Biotin in microbes, the genes involved in its biosynthesis, its biochemical role and perspectives for biotechnological production. Appl. Microbiol. Biotechnol. 61, 21–31 (2003).

  • 16.

    Lin, S., Hanson, R. E. & Cronan, J. E. Biotin synthesis begins by hijacking the fatty acid synthetic pathway. Nat. Chem. Biol. 6, 682–688 (2010).

  • 17.

    Okami, Y. et al. Studies on a new amino acid antibiotic, amiclenomycin. J. Antibiot. 27, 656–664 (1974).

  • 18.

    Kitahara, T., Hotta, K., Yoshida, M. & Okami, Y. Biological studies on amiclenomycin. J. Antibiot. 28, 215–222 (1975).

  • 19.

    Dai, R., Wilson, D. J., Geders, T. W., Aldrich, C. C. & Finzel, B. C. Inhibition of Mycobacterium tuberculosis transaminase BioA by aryl hydrazines and hydrazides. Chembiochem 15, 575–586 (2014).

  • 20.

    Park, S. W. et al. Target-based identification of whole-cell active inhibitors of biotin biosynthesis in Mycobacterium tuberculosis. Chem. Biol. 22, 76–86 (2015).

  • 21.

    Liu, F. et al. Structure-based optimization of pyridoxal 5′-phosphate-dependent transaminase enzyme (BioA) inhibitors that target biotin biosynthesis in Mycobacterium tuberculosis. J. Med. Chem. 60, 5507–5520 (2017).

  • 22.

    Salaemae, W., Booker, G. W. & Polyak, S. W. Genetic requirements for mycobacterial survival during infection. Microbiol. Spectr. 4, VMBF-0008-2015 (2016).

  • 23.

    Mock, D. M. & Malik, M. I. Distribution of biotin in human plasma: most of the biotin is not bound to protein. Am. J. Clin. Nutr. 56, 427–432 (1992).

  • 24.

    Trüeb, R. M. Serum biotin levels in women complaining of hair loss. Int. J. Trichology 8, 73–77 (2016).

  • 25.

    Harthe, C. & Claustrat, B. A sensitive and practical competitive radioassay for plasma biotin. Ann. Clin. Biochem. 40, 259–263 (2003).

  • 26.

    Perry, C. A. et al. Pregnancy and lactation alter biomarkers of biotin metabolism in women consuming a controlled diet. J. Nutr. 144, 1977–1984 (2014).

  • 27.

    Wakabayashi, K. et al. Serum biotin in Japanese children: enzyme-linked immunosorbent assay measurement. Pediatr. Int. 58, 872–876 (2016).

  • 28.

    Whiteside, M. D., Winsor, G. L., Laird, M. R. & Brinkman, F. S. L. OrtholugeDB: a bacterial and archaeal orthology resource for improved comparative genomic analysis. Nucleic Acids Res. 41, 366–376 (2013).

  • 29.

    Zlitni, S., Ferruccio, L. F. & Brown, E. D. Metabolic suppression identifies new antibacterial inhibitors under nutrient limitation. Nat. Chem. Biol. 9, 796–804 (2013).

  • 30.

    Tiwari, D. et al. Targeting protein biotinylation enhances tuberculosis chemotherapy. Sci. Transl. Med. 10, eaal1803 (2018).

  • 31.

    El Zahed, S. S. & Brown, E. D. Chemical–chemical combinations map uncharted interactions in Escherichia coli under nutrient stress. iScience 2, 168–181 (2018).

  • 32.

    Legrand, N. et al. Humanized mice for modeling human infectious disease: challenges, progress, and outlook. Cell Host Microbe 6, 5–9 (2009).

  • 33.

    Lin, S. & Cronan, J. E. The BioC O-methyltransferase catalyzes methyl esterification of malonyl-acyl carrier protein, an essential step in biotin synthesis. J. Biol. Chem. 287, 37010–37020 (2012).

  • 34.

    Ploux, O., Breyne, O., Carillon, S. & Marquet, A. Slow-binding and competitive inhibition of 8-amino-7-oxopelargonate synthase, a pyridoxal-5′-phosphate-dependent enzyme involved in biotin biosynthesis, by substrate and intermediate analogs. Eur. J. Biochem. 259, 63–70 (1999).

  • 35.

    Hanka, L. J., Martin, D. G. & Reineke, L. M. Two new antimetabolites of biotin: α-methyldethiobiotin and α-methylbiotin. Antimicrob. Agents Chemother. 1, 135–138 (1972).

  • 36.

    Eisenberg, M. A. & Hsiung, S. C. Mode of action of the biotin antimetabolites actithiazic acid and α-methyldethiobiotin. Antimicrob. Agents Chemother. 21, 5–10 (1982).

  • 37.

    Alexeev, D. et al. Rational design of an inhibitor of dethiobiotin synthetase; interaction of 6-hydroxypyrimindin-4(3H)-one with the adenine base binding site. Tetrahedron 54, 15891–15898 (1998).

  • 38.

    Bockman, M. R. et al. Investigation of (S)-(−)-acidomycin: a selective antimycobacterial natural product that inhibits biotin synthase. ACS Infect. Dis. 5, 598–617 (2019).

  • 39.

    Taira, J. et al. Identification of a novel class of small compounds with anti-tuberculosis activity by in silico structure-based drug screening. J. Antibiot. 70, 1057–1064 (2017).

  • 40.

    Datta, S., Costantino, N. & Court, D. L. A set of recombineering plasmids for Gram-negative bacteria. Gene 379, 109–115 (2006).

  • 41.

    Datsenko, Ka & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).

  • 42.

    Huang, T. W. et al. Capsule deletion via a λ-Red knockout system perturbs biofilm formation and fimbriae expression in Klebsiella pneumoniae MGH 78578. BMC Res. Notes 7, 13 (2014).

  • 43.

    Gallagher, L. A. et al. Resources for genetic and genomic analysis of emerging pathogen Acinetobacter baumannii. J. Bacteriol. 197, 2027–2035 (2015).

  • 44.

    Held, K., Ramage, E., Jacobs, M., Gallagher, L. & Manoil, C. Sequence-verified two-allele transposon mutant library for Pseudomonas aeruginosa PAO1. J. Bacteriol. 194, 6387–6389 (2012).

  • 45.

    Fey, P. D. et al. A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. mBio 4, e00537–12 (2013).

  • 46.

    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D 66, 213–221 (2010).

  • 47.

    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. Sect. D 60, 2126–2132 (2004).

  • 48.

    Mann, S., Eveleigh, L., Lequin, O. & Ploux, O. A microplate fluorescence assay for DAPA aminotransferase by detection of the vicinal diamine 7,8-diaminopelargonic acid. Anal. Biochem. 432, 90–96 (2013).

  • Source