Antibiotics Are Man's Greatest Invention

Synergistic Antibacterial Effects of Metallic Nanoparticle Combinations

  • 1.

    Salata, O. V. Applications of nanoparticles in biology and medicine. J Nanobiotechnology 2(1), 1–6 (2004).

  • 2.

    Jong, W. H. & Borm, P. J. A. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3(2), 133–149 (2008).

  • 3.

    Furno, F. et al. Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? J Antimicrob Chemother 54(6), 1019–1024 (2004).

  • 4.

    Allahverdiyev, A. M., Kon, K. V., Abamor, E. S., Bagirova, M. & Rafailovich, M. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents. Expert Rev Anti-Infect Ther 9(11), 1035–1052 (2011).

  • 5.

    Ghasemi, F. & Jalal, R. Journal of Global Antimicrobial Resistance Antimicrobial action of zinc oxide nanoparticles in combination with ciprofloxacin and ceftazidime against multidrug-resistant Acinetobacter baumannii. J Glob Antimicrob Resist 6, 118–122 (2016).

  • 6.

    Bahadar, H., Maqbool, F., Niaz, K. & Abdollahi, M. Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 20(1), 1–11 (2016).

  • 7.

    Dizaj, S. M., Lotfipour, F., Barzegar-Jalali, M., Zarrintan, M. H. & Adibkia, K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 44(1), 278–84 (2014).

  • 8.

    Hajipour, M. J. et al. Antibacterial properties of nanoparticles. Curr Trends Biotechnol 30(10), 499–511 (2012).

  • 9.

    Mirzajani, F., Ghassempour, A., Aliahmadi, A. & Ali, M. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Res Microbiol 162(5), 542–549 (2011).

  • 10.

    Xie, Y., He, Y., Irwin, P. L., Jin, T. & Shi, X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 77(7), 2325–2331 (2011).

  • 11.

    Garza-Cervantes, J. A. et al. Synergistic antimicrobial effects of silver/transition-metal combinatorial treatments. Scientific reports 7(1), 903 (2017).

  • 12.

    Prabhu, S. & Poulose, E. K. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2, 32–42 (2012).

  • 13.

    Dakal, T. C., Kumar, A., Majumdar, R. S. & Yadav, V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7, 1831 (2016).

  • 14.

    Chambers, H. F. & Deleo, F. R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7(9), 629–41 (2009).

  • 15.

    Lister, P. D., Wolter, D. J. & Hanson, N. D. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 22, 582–610 (2009).

  • 16.

    Ramírez-Estrada, S., Borgatta, B. & Rello, J. Pseudomonas aeruginosa ventilator-associate pneumonia management. Infect Drug Resist 9, 7–18 (2016).

  • 17.

    Hsueh, Y., Tsai, P. H. & Lin, K. S. pH-dependent antimicrobial properties of copper oxide nanoparticles in Staphylococcus aureus. Int J Mol Sci 18(4), 793 (2017).

  • 18.

    Liu, J. et al. The toxicology of ion-shedding zinc oxide nanoparticles. Crit Rev Toxicol 46, 348–384 (2016).

  • 19.

    Sondi, I. & Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1), 177–182 (2004).

  • 20.

    Ren, G., Oxford, J. S., Reip, P. W., Lambkin-Williams, R. & Mann, A. Virucidal Materials, WO2007093808A2 (2006).

  • 21.

    Ren, G., Oxford, J. S., Reip, P. W., Lambkin-Williams, R. & Mann, A. Anti-Viral Formulations Nanomaterials and Nanoparticles. U.S. Patent Application 13/691,099 (2013).

  • 22.

    Grass, G., Rensing, C. & Solioz, M. Metallic copper as an antimicrobial surface. Appl Environ Microbiol 77, 1541–1547 (2011).

  • 23.

    Punjabi, K. et al. Efficiency of Biosynthesized Silver and Zinc Nanoparticles Against Multi-Drug Resistant Pathogens. Frontiers in Microbiology 9, 2207 (2018).

  • 24.

    Brown, T. A. & Smith, D. G. The effects of silver nitrate on the growth and ultrastructure of the yeast Cryptococcus albidus. Microbios Lett 3, 155–162 (1976).

  • 25.

    Izatt, R. M., Christensen, J. J. & Rytting, J. H. Sites and thermodynamic quantities associated with proton and metal ion interaction with ribonucleic acid, deoxyribonucleic acid, and their constituent bases, nucleosides, and nucleotides. Chemical Reviews 71(5), 439–481 (1971).

  • 26.

    Kim, J. S. et al. Antimicrobial effects of silver nanoparticles. Nanomedicine: NBM 3(1), 95–101 (2007).

  • 27.

    Matharu, R. K., Ciric, L. & Edirisinghe, M. Nanocomposites: suitable alternatives as antimicrobial agents. Nanotechnology 29(28), 282001 (2018).

  • 28.

    Moronoes, J. R. et al. The bactericidal effect of silver nanoparticles. Nanotechnology 6(10), 2346–2353 (2005).

  • 29.

    Pellieux, C., Dewilde, A., Pierlot, C. & Aubry, J. M. Bactericidal and virucidal activities of singlet oxygen generated by thermolysis of naphthalene endoperoxides. Methods Enzymol 319, 197–207 (2000).

  • 30.

    Richards, R. M., Odelola, H. A. & Anderson, B. Effect of silver on whole cells and spheroplasts of a silver resistant Pseudomonas aeruginosa. Microbios 39(157–158), 151–157 (1984).

  • 31.

    Soo-Hwan, K., Lee, H.-S., Ryu, D.-S., Choi, S.-J. & Lee, D.-S. Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. J Microbiol Biotechnol 39(1), 77–85 (2011).

  • 32.

    Chatterjee, A. K., Chakraborty, R. & Basu, T. Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 25(13), 135101 (2014).

  • 33.

    Wu, X. H. et al. Antibacterial properties of mesoporous copper-doped silica xerogels. Biomed Mater 4(4), 045008 (2009).

  • 34.

    Amro, N. A. et al. High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. Langmuir 16(6), 2789–2796 (2000).

  • 35.

    Azam, A., Ahmed, A. S., Oves, M., Khan, M. S. & Memic, A. Size- dependent antimicrobial properties of CuO nanoparticles against Gram- positive and -negative bacterial strains. Int J Nanomed 7, 3527–3535 (2012).

  • 36.

    Jiang, W., Mashayekhi, H. & Xing, B. Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environmental Pollution 157, 1619–1625 (2009).

  • 37.

    Wang, L. & Hu, C. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed 12, 1227–49 (2017).

  • 38.

    Brown, S., Maria, J. P. S. & Walker, S. Wall teichoic acids of gram-positive bacteria. Annu Rev Microbiol 2013, 67 (2013).

  • 39.

    Pal, S., Tak, Y. K. & Song, J. M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73, 1712–1720 (2007).

  • 40.

    Shaikh, S. et al. Mechanistic Insights into the Antimicrobial Actions of Metallic Nanoparticles and Their Implications for Multidrug Resistance. International journal of molecular sciences 20(no. 10), 2468 (2019).

  • 41.

    Syed, M. A., Manzoor, U., Shah, I. & Bukhari, H. A. Antibacterial effects of tungsten nanoparticles on the Escherichia coli strains isolated from catheterized urinary tract infection (UTI) cases and Staphylococcus aureus. New Microbiol 33, 329–35 (2010).

  • 42.

    Cheong, Y. K. et al. Characterisation of the chemical composition and structural features of novel antimicrobial nanoparticles. Nanomaterials 7(7), 152 (2017).

  • 43.

    Cheong, Y. K., Yang, X., Wilson, R. M. & Ren Structure activity relationship of Antimicrobial Nanoparticle Formulations to selective microbes. Phantoms foundation ISBN (Electronic) 978-84-697-7905-7, 105–106 (2017).

  • 44.

    Stocks, S. M. Mechanism and use of the commercially available viability stain. BacLight Cytometry A 61(2), 189–195 (2004).

  • Source